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On Subsystem Recognition in Compound Physical
Systems†

Frank Valckenborgh1,2
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After a discussion on property lattices, I introduce a category of such lattices
and structure-preserving maps. A careful analysis of the notions of physical
system and of subsystem leads to the construction of a particular family of
morphisms that are used for the construction of the coproduct in this category.

1. INTRODUCTION

In the approach to the foundations of physics that was initiated by the
so-called Geneva School (Aerts, 1982; Jauch, 1968; Moore, 1999; Piron
1976, 1990), a theory is constructed of which the basic concepts and postulates
are, at least partially, operationally motivated. A particular physical system
is conceived as some part of the external phenomenal world that can be
conceptually separated from its surroundings in the sense that its interaction
with the environment can either be ignored or described in a simple way
(Moore, 1999). It is clear that the notion of physical system depends more
or less on the point of view of the physicist, hence is susceptible to a certain
degree of arbitrariness and idealization.

Following Aerts (1982), I shall start with a well-defined class of primitive
questions 3 one can perform on a given physical system and which is as
complete as possible. Each primitive question a corresponds to one real
experimental procedure one can perform on the physical system, and the
performance of the experiment should yield two possible results: either it
confirms the result the physicist anticipated or it gives a negative result. A
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simple interchange of the positive and negative result gives the inverse
question a, P 3. Next, one introduces the notions of product question Piai ,
a preorder on the obtained set of questions 4, and one then proceeds with
the construction of a complete lattice of properties + 5 4/'5 {[a].a P
4}. It is a basic assumption that the possible states of a physical system are
in a one-to-one correspondence with the set of atoms of the lattice of proper-
ties. Also, two states p and q are said to be orthogonal if there exists a
question a P 4 such that a is true if the system is in state p and a, is true
if it is in state q. It is not difficult to prove that p ' q ⇔ ∃a P 3: p #
[a] & q # [a,]. This orthogonality relation can be extended to + \{0} by
defining a ' b ⇔ ∀p # a, ∀q # b: p ' q. With slight abuse of language,
one also puts 0 ' a, ∀a P +. To obtain a quantum-like theory with superselec-
tion rules, Piron (1976) and Aerts (1982) added several postulates to the
lattice of properties associated with the physical system.

We shall use the notation +p for the set of properties generated by the
primitive questions 3. Because +p generates the lattice by taking arbitrary
meets, it is an order generating set in the opposite lattice +OP. Therefore we
shall say that +p is a coorder generating set. I start with the following
definition.

Definition 1. A property lattice + is a complete atomistic lattice, with
an order generating set of states and an orthocomplemented coorder generating
set +p. The states ( are the atoms of the property lattice.

It is an assumption that the orthocomplementation on +p is the mapping
[a] ° [a,] for a P 3 (Aerts and Valckenborgh, n.d.). We shall also write
[a,] 5 [a]'.

In contemporary mathematical thinking, it is customary to consider not
only algebraic systems, but also mappings that conserve (some of) the relevant
structure of these systems. Because the physical meaning of ∧i ai is operational
conjunction and hence intrinsic to the family {ai}, obvious candidates for
such structure-preserving maps are maps f : + → +8 that preserve arbitrary
meets. One can also assume that f(3p) # +8p such that ∀a P +p: f(a') 5
f(a)'. In this way, it is easy to see that we obtain a category that we shall
call 'MCLat. For example, one can prove that in 'MCLat, the decomposition
of a property lattice in components remains valid (Aerts and Valckenborgh,
n.d.). Notice that this category is definitely not equal to the category Prop
that was introduced by Moore (1995) in his categorical reformulation of the
basic mathematical structures appearing in the Geneva approach.

2. THE RECOGNITION OF SUBSYSTEMS

In this paper, we shall restrict ourselves to the case of nonidentical
systems. Suppose that we have two physical systems 6 and 68 described by
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property lattices + and +8. If the first entity can both occur as an individual,
isolated physical system and as part of the second physical system, we expect
that for every nontrivial question a relative to the first system, there exists
an “equivalent” question a8 that can be performed on the second, compound
system. Therefore we have the induction of a map f : + → +8: [a] ° [a8].
If + is to be a subsystem of +8, we expect that the map f should preserve
the structure of the first physical system. Also implicit in the notion of a
subsystem is the idea that one cannot invent new experiments to perform on
the subsystem itself.

Definition 2. A subsystem map is a one-to-one map f : + → +8: [a] °
[a8] subject to the following conditions:

(1) f(∧i ai) 5 ∧i f (ai)
(2) f(0) 5 08
(3) ∀c8 P +8P: [a Þ 0 & f (a) # c8] ⇒ ∃ c P +P: f(c) 5 c8
(4) ∀a P 3: ∃a8 P 38: a8 P f ([a]) & f([a])' 5 f([a]')

These conditions seem to be a sine qua non to recognize subsystems in
physical systems on the propositional level. Note that every subsystem map
is a morphism in 'MCLat.

Lemma 1. ∀ a, b, ai P +, ∀p, q P (: (1) ∀c8 P +8: [a Þ 0 & f(a) #
c8] ⇒ ∃c P +: f(c) 5 c8; (2) f(1) 5 18; (3) f(∨i ai) 5 ∨i f(ai); (4) p ' q ⇒
f( p) ' f(q).

Proof : (1) Let c8 P +8 and 08 Þ f(a) # c8, with c8 5 [Pj g8j ],
g8j P 38, ∀j; hence, ∀j: f(a) # [g8j ] ⇒ ∀j: ∃gj P 3: [g8j ] 5 f([gj]) ⇒ c8 5
∧j f ([gj]) 5 f([Pj gj ]); (2) ∀ a P + \{0}: f(a) # 18 ⇒ ∃ c P +: f(c) 5 18

⇒ a # c ⇒ c 5 1; (3) Let ∨i ai Þ 0 and ∀i: f(ai) # c8 for c8 P +8; then ∃
c P +: c8 5 f(c); hence ∀i: ai # c ⇔ ∨i ai # c ⇔ f(∨i ai) # c8; (4) ∃a P
3: p # [a], q # [a]' ⇒ f( p) # f([a]), f(q) # f ([a]') 5 f([a])'.

What can we say on the level of the state space descriptions ( and (8
of the two physical systems 6 and 68? In the restricted case where it is
legitimate to consider the subsystem as sufficiently isolated from the rest of
the system, hence as a physical system in our sense, if 68 is in a pure state
p8 P (8, the state of the subsystem should be also determined as p P (,
i.e., we can define a map p8 ° p. Hence, we can construct a map g: (8 \E8
→ (: p8 ° p, where E8 are the states of the compound system for which
the subsystem is not sufficiently isolated. One can remark that it should be
possible in principle to extend the map g to the whole of (8, but in that case
one should allow for the description of the subsystem in terms of new
quantities one might call ‘non-pure states.’ For example, it is conceivable
that the experimental isolation of 6 from the larger 68 can be described in
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terms of statistical quantities. Assume now that 6 is sufficiently isolated
from the rest of 68. If 68 is in a state p8 such that f(a) is actual, then it is
obvious that the measurement of a P a on 6 should be independent of 6
being considered as a subsystem or not:

∀p8 P (8 \E8: p8 # f(a) ⇔ g( p8) # a (1)

If we note that Equation (1) resembles a Galois connection, we can construct
the maps g: (8 \E8 → (.3 The following result is well known. A proof can
be found, for example, in Moore (1995).

Lemma 2. If f is ∧-preserving, then the condition ∀a, b: ĝ(a8) # a ⇔
a8 # f(a) has a unique solution ĝ(a8) 5 ∧{a.a8 # f(a)}. ĝ is ∨-preserving.

Proposition 3. From (1), g can be uniquely constructed from f. Moreover,
we can take (8 \E8 5 {p8 P (.∃p P (: p8 # f( p)}; g is surjective and ∀
p8, q8 P ( \E8: g( p8) ' g(q8) ⇒ p8 ' q8.

Proof : First we prove uniqueness: If g1: (8 \E8 → (, g2: (8 \E8 → (
satisfy the conditions, then ∀ p8 P (8 \E8: g1( p8) # g1( p8) ⇔ p8 # f + g1( p8)
⇔ g2( p8) # g1( p8). Hence g is the restriction of ĝ. We prove that {p8 P
(8.∃ p P (: p8 # f( p)} is the maximal possible domain: p8 P (8 \E8 ⇔
ĝ( p8) P ( ⇒ ∃p P (: ĝ( p8) # p ⇔ ∃p P (: p8 # f( p). Conversely, if ∃
p P (: p8 # f( p), then ĝ ( p8) # p. Now ĝ( p8) 5 0 ⇒ ∀ a P +: ĝ( p8) #
a ⇔ ∀ a P +: a8 # f(a) ⇒ p8 5 0. Hence, ĝ( p8) 5 p P (. Let p P (;
take (8 { p8 # f( p); then p8 P (8 \E8 ⇒ 0 , g( p8) # p ⇒ g( p8) 5 p. If
∃ a P 3: g( p8) # [a], g(q8) # [a,] ⇒ p8 # f([a]), q8 # f([a,]); because
f([a]) P +8p, the assertion follows. n

From a physical point of view, it is no surprise that the domain of the
map g consists exactly of those states of the compound system such that the
subsystem itself is maximally specified.

3. THE COPRODUCT OF PROPERTY LATTICES

At this point, we have constructed property lattices, as mathematical
representatives for the description of physical systems, and two kinds of
mappings between property lattices: on one hand, a family of mappings that
are general structure-preserving morphisms, on the other hand, mappings that
express our subsystem idea. In the case that there is no interaction between
the subsystems, a question that can be performed on one subsystem does not

3 A Galois connection consists of a pair ĝ ¢ f of order-preserving maps f : + u +8 and ĝ: +8
→ +, defined on preordered classes + and +8 such that ∀ a, a8: ĝ(a8) # a ⇔ a8 # f(a).
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have any influence on the other subsystems, and every subsystem can be
considered as a genuine physical system in our sense.

In category theory, a sink is a pair consisting of an object A and a set-
indexed family of morphisms gi: Ai → A. One says that a sink (Ai →

ci
C )iPI

C is a coproduct if for every sink (Ai →
fi

A)iPI there exists a unique morphism
C →f

A such that f + ci 5 fi , ∀i P I. It is well known and easy to see that
products and coproducts, if they exist, are essentially unique, that is, unique
up to isomorphism (Adámek et al., 1990). Hence, it makes sense from a
mathematical and physical point of view to look for the existence of a
coproduct in 'MCLat. Aerts (1984) already proved the existence of the
coproduct of two property lattices +1 q +2 in a related category.4 I shall
extend his construction and prove in this way the existence of a coproduct
in general.

Theorem 4. If {+i}iPI is a (set-indexed) family of property lattices, then
(+i →

ci qiPI +)iPI is the coproduct in the category 'MCLat of property lat-
tices, with

q
iPI

+i 5 { f . f : I → øiPI +i , f(i) P +i \{Oi} ∀i P I} ø {O}

∀f, g P q
iPI

+i: f # g ⇔ f(i) #i g(i) ∀i P I, 0 # f

∧ { fj . j P J} 5 Hf : f(i) 5 ∧jPJ fj (i) ∀i P I if ∀ i P I: f(i) Þ 0i

0 if ∃i P I: f(i) 5 0i

∨ { fj . j P J} 5 f : f(i) 5 ∨jPJ fj (i) ∀i P I

and an order generating set of states PiPI (i and subsystem maps:

ci: +i → q
iPI

+i: ai ° ci (ai) Þ Hfai if ai Þ 0i

0 if ai 5 0i

where J Þ 0⁄ and fai(i) 5 ai, fai( j ) 5 1j if j Þ i.

I give the proof in a series of lemmas. If convenient I shall write a(i) 5 ai.

Lemma 5. qiPI +i is a complete atomic lattice with an order generating
set of atoms PiPI (i and an orthocomplemented coorder generating set +P 5
øi ci (+Pi).

Proof. We only prove the last assertion. It is not difficult to see that the
set øi ci (+Pi) generates the lattice qiPI +i by taking arbitrary meets. More-

4 For one or another reason, he called it the tensor product of two property lattices.
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over, since each +Pi is an orthocomplemented poset, also øi ci (+Pi) is: if
fai P ci (+Pi), then fa'

i is the orthocomplement of fai: ( fai)
' 5fa'

i . n

Lemma 6. The mappings ci: +i → qiPI +i are subsystem maps.

Proof. (1) ci (∧jaj
i) 5 f∧ja

j
i 5 ∧j faj

i 5 ∧jci(aj
i); (3) let d P +p , then ∃i:

d P ci (+Pi) ⇒ ∃bi P +Pi: d 5 fbi; (4) let a P +P; then ∃i: a 5 ci (ai) and
ci (a'

i ) 5 fa'
i 5( fai)

'. n

Lemma 7. ∀p, q P PiPI(i: p ' q ⇔ ∃i P I:p(i) ' q(i)

Proof. If p( j ) ' q( j ), then ∃ aj P +Pj such that pj # aj , qj # a'
j , hence

cj (pj) # cj (a)j , cj (q)j # cj (a'
j ) 5 cj (aj)' ⇒ cj (pj) ' cj (qj). Since p #

cj (p( j )), q # cj (q( j )) ⇒ p ' q. Conversely, if p ' q, ∃ a P +P , p # a,
q # a'. Since ∃i: a P ci(+Pi) ⇒ ∃ai P +Pi: a 5 fai ⇒ p(i) # ai , q(i) #
a'

i . n

Lemma 8. ∀ a, b P qiPI +i: a ' b ⇔ ∃k P I: a(k) ' b(k)

Proof. Assume that ∃k P I: a(k) ' b(k). Let p # a, q # b ⇔ ∀i P I:
p(i) # a(i), q(i) # b(i) ⇒ p(k) ' q(k) ⇔ p ' q ⇒ a ' b. Conversely,
assume that ∀i P I: ai '⁄ bi ⇒ ∀i P I: ∃ pi # ai: ∃ qi # bi: pi '⁄ qi. Construct
p, q: p(i) 5 pi ∀i P I; then p # a, q # b and p '⁄ q. Therefore a '⁄ b. n

Lemma 9. (+i →
ci qiPI+)iPI, is the coproduct in 'MCLat.

Proof. For any sink (+i →
di

+*)iPI, we have to prove that there exists a
unique morphism d: qiPI +i → +* such that ∀i P I: di 5 d + ci. Let 0 Þ a
P qiPI +i; then ∀i: a(i) Þ 0i. We construct a map d: qiPI +i → +*: a °
∧i di (ai) for a Þ 0 and d(0) 5 0*. It is easy to see that d is ∧-preserving
and d + cj (aj) 5 d( faj ) 5 ∧iPI,iÞjdi (1i) ∧ dj (aj) 5 dj (aj) and d + cj (0j) 5
d(0) 5 0* 5 dj (0j). If a P +P , then ∃ai P +Pi: fai

5 a. Hence d(a') 5
di (a'

i ) 5 di (ai)' 5 d(a)'. Finally, for an arbitrary morphism d̂: qiPI +i →
+* that satisfies the requirements, we have, since for a Þ 0: a 5 ∧i fai

, d̂(a)
5 ∧id̂( fai

) 5 ∧i d̂ + c(ai) 5 ∧i di (ai) 5 d(a), and this proves the uniqueness. n

By its definition, the coproduct of a family of property lattices is the
minimal compositional ingredient of the property lattices associated with the
isolated subsystems into a compound system, in the sense that there has to exist
a structure-preserving map from the coproduct to every other composition of
the property lattices. The coproduct in 'MCLat is weakly modular, but
neither orthocomplemented nor does it satisfy the covering law (Aerts and
Valckenborgh, n.d.).
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